Словари
— То, что поглощается, научным языком.
Вещество, на поверхности которого происходит адсорбция.
АДСОРБЕ́НТ -а; м. Адсорбирующее вещество.
Вещество, способное захватывать своим поверхностным слоем молекулы газа или жидкости (адсорбатов).
адсорбе́нт, адсорбе́нты, адсорбе́нта, адсорбе́нтов, адсорбе́нту, адсорбе́нтам, адсорбе́нтом, адсорбе́нтами, адсорбе́нте, адсорбе́нтах
— тело, на поверхности которого происходит адсорбция распространенные адсорбенты — активированный уголь, силикагель и др.
— Тело, на поверхности которого проходит поглощение вещества из раствора или газа.
Аппарат, в котором осуществляют абсорбцию.
АДСО́РБЕР -а; м. Аппарат, в котором осуществляют адсорбцию.
адсо́рбер, адсо́рберы, адсо́рбера, адсо́рберов, адсо́рберу, адсо́рберам, адсо́рбером, адсо́рберами, адсо́рбере, адсо́рберах
— основной аппарат установки, в которой осуществляют адсорбцию.
— Аппарат для поглощения веществ из растворов или газов на поверхности твёрдого тела или жидкости.
адсорби́рованный; кратк. форма -ан, -ана
адсорби́рованный, -ан, -ана, -ано, -аны
Поглощать, всасывать вещество из раствора или газа поверхностью твёрдого тела или поверхностным слоем жидкости.
АДСОРБИ́РОВАТЬ -рую, -руешь; адсорби́рованный; -ван, -а, -о; св. и нсв. Произвести — производить адсорбцию.
◁ Адсорби́роваться, -руется; страд.
без доп. физ., хим. Произвести (производить) адсорбцию.
— рую, рует, несов. и сов. , что (нем. adsorbieren адсорбировать(ся)
адсорби́ровать(ся), -би́рую, -би́руешь, -би́рует(ся)
ад/сорб/и́р/ова/ть(ся) [ср. аб/сорб/и́р/ова/ть(ся)].
Адсорби́рующие сре́дства (мед.), тонко измельчённые нерастворимые в воде порошки; применяются при заболеваниях кожи в форме присыпок и внутрь при отравлениях и некоторых желудочно-кишечных заболеваниях.
АДСОРБИРУЮЩИЕ СРЕДСТВА — АДСОРБИ́РУЮЩИЕ СРЕ́ДСТВА, в медицине — тонко измельченные нерастворимые в воде порошки; применяются при заболеваниях кожи в форме присыпок и внутрь при отравлениях и некоторых желудочно-кишечных заболеваниях.
АДСОРБИРУЮЩИЕ СРЕДСТВА — в медицине — тонко измельченные нерастворимые в воде порошки; применяются при заболеваниях кожи в форме присыпок и внутрь при отравлениях и некоторых желудочно-кишечных заболеваниях.
АДСОРБИ́РУЮЩИЙ -ая, -ее. Обладающий способностью к адсорбции. А-ие вещества.
1. соотн. с сущ. адсорбция, связанный с ним
2. Свойственный адсорбции, характерный для неё.
адсорбцио́нный, адсорбцио́нная, адсорбцио́нное, адсорбцио́нные, адсорбцио́нного, адсорбцио́нной, адсорбцио́нных, адсорбцио́нному, адсорбцио́нным, адсорбцио́нную, адсорбцио́нною, адсорбцио́нными, адсорбцио́нном, адсорбцио́нен, адсорбцио́нна, адсорбцио́нно, адсорбцио́нны, адсорбцио́ннее, поадсорбцио́ннее, адсорбцио́нней, поадсорбцио́нней
Адсорбцио́нный насо́с — вакуумный насос, действие которого основано на явлении адсорбции откачиваемого газа на поверхности цеолита или другого газопоглощающего вещества, в том числе геттера.
АДСОРБЦИОННЫЙ НАСОС — АДСОРБЦИО́ННЫЙ НАСО́С, вакуумный насос, действие которого основано на явлении адсорбции откачиваемого газа на поверхности цеолита или др. газопоглощающего вещества, в т. ч. геттера (см. ГЕТТЕР).
АДСОРБЦИОННЫЙ НАСОС — вакуумный насос, действие которого основано на явлении адсорбции откачиваемого газа на поверхности цеолита или др. газопоглощающего вещества, в т. ч. геттера.
Поглощение, всасывание вещества из раствора или газа поверхностью твёрдого тела или поверхностным слоем жидкости.
АДСО́РБЦИЯ -и; ж. [от лат. ad- к и sorbere — поглощать, всасывать]. Поглощение вещества из газа или раствора поверхностным слоем жидкого или твёрдого адсорбента (используется в химии, технике и т.п. для разделения и очистки веществ).
адсо́рбция (от лат. ad — на, при и sorbeo — поглощаю), поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. Адсорбенты обычно имеют большую удельную поверхность — до нескольких сотен м 2 /г. Физическая адсорбция — результат действия дисперсионных или электростатических сил. Если адсорбция сопровождается химической реакцией поглощаемого вещества с адсорбентом, то она называется хемосорбцией. В промышленности адсорбция осуществляют в специальных аппаратах — адсорберах; применяют для осушки газовой очистки органических жидкостей и воды, улавливания ценных или вредных отходов производства.
АДСОРБЦИЯ — АДСО́РБЦИЯ (от лат. ad — на, при и sorbeo — поглощаю), поглощение какого-либо вещества (адсорбата) из газообразной среды или раствора поверхностным слоем жидкости или твердого тела (адсорбентом). Различают два вида адсорбции: физическую и химическую (хемосорбцию (см. ХЕМОСОРБЦИЯ)). Менее прочная физическая адсорбция не сопровождается существенными изменениями молекул адсорбата. Она обусловлена силами межмолекулярного взаимодействия (см. МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ), которые связывают молекулы в жидкостях и некоторых кристаллах и проявляются в поведении сильно сжатых газов. Существенное отличие физической адсорбции — ее обратимость. При хемосорбции молекулы адсорбата и адсорбента образуют химические соединения. Часто адсорбция обусловлена и физическими и химическими силами, поэтому не существует четкой границы между физической адсорбцией и хемосорбцией.
Явление адсорбции связано с тем, что силы межмолекулярного взаимодействия на грАݐؑƐՠраздела фаз нескомпенсированы, и, следовательно, пограничный слой обладает избытком энергии — свободной поверхностной энергией (см. ПОВЕРХНОСТНАЯ ЭНЕРГИЯ). В результате притяжения поверхностью раздела фаз находящихся вблизи нее молекул адсорбата свободная поверхностная энергия уменьшается, т.е. процессы адсорбции энергетически выгодны. Адсорбция всегда является экзотермическим процессом, т. е. протекает с выделением теплоты адсорбции Hs.
Значения энтальпии (см. ЭНТАЛЬПИЯ) физической адсорбции достаточно велики (порядка 10 ккал/моль) из-за слабых атомных взаимодействий. Физическая адсорбция легко обратима, поэтому, например, в случае адсорбции газа, достаточно легко может осуществиться замена адсорбированного слоя газа другим газом. Это явление называется обменной адсорбцией.
Процесс адсорбции заканчивается установлением адсорбционного равновесия между адсорбентом и адсорбатом. Условием равновесия является равенство химических потенциалов обеих фаз. С ростом температуры или давления адсорбата в объеме увеличивается частота попаданий молекул адсорбата на поверхность адсорбента; пропорционально ей возрастает скорость адсорбции и увеличивается равновесное количество адсорбированных молекул. Кривые зависимости равновесной адсорбции от температуры или давления адсорбата называются, соответственно, изобарой и изотермой адсорбции.
Адсорбированные молекулы могут перемещаться по поверхности, совершая при этом колебательные движения, то приближаясь к поверхности, то удаляясь от нее. Время, в течение которого молекула находится на поверхности, называется временем адсорбции. С ростом температуры время адсорбции уменьшается: чем выше температура, тем интенсивнее колебательное движение, и больше вероятность того, что в процессе таких колебаний связь молекулы с поверхностью будет разорвана и молекула покинет поверхность. Процесс, при котором адсорбированные молекулы покидают поверхность, называется десорбция (см. ДЕСОРБЦИЯ). Скоростью адсорбции (десорбции) называется отношение количества молекул, адсорбирующихся (десорбирующихся) за единицу времени, к единице поверхности или массы адсорбента. Если скорости адсорбции и десорбции равны друг другу, устанавливается адсорбционное равновесие. В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и др.).
В случае контакта поверхности кристалла и жидкого раствора из жидкости на поверхность твердого тела переходят молекулы, находящиеся в растворе. Между их концентрациями в растворе и на поверхности адсорбента устанавливается равновесие. Вещества, адсорбируемые из раствора, называются поверхностно-активными веществами (см. ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА (ПАВ)) (ПАВ). Высокая адсорбируемость ПАВов связана с сильным снижением поверхностного натяжения (см. ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ) раствора на данной поверхности по сравнению с поверхностным натяжением чистого растворителя на этой же поверхности. Инактивные вещества повышают поверхностное натяжение и ухудшают адсорбцию.
Если теплота адсорбции сравнима с поверхностной энергией адсорбента, то в процессе адсорбции может существенно меняться кристаллическая структура поверхности твердого тела, причем при физической адсорбции перестройке подвергаются в основном поверхности молекулярных кристаллов, а в случае хемосорбции изменения поверхностной структуры наблюдаются даже для металлов и ионных кристаллов. Адсорбированные на поверхности пленки сильно изменяют свойства поверхности, а в ряде случаев затрагивают и более толстые приповерхностные слои.
Адсорбция играет важную роль во многих природных процессах, таких, как обогащение почв и образование вторичных рудных месторождений. Именно благодаря адсорбции осуществляется первая стадия поглощения различных веществ из окружающей среды клетками и тканями биологических систем, функционирование биологических мембран, первые этапы взаимодействия ферментов с субстратом, защитные реакции против токсичных веществ. Многие адсорбенты (активный уголь, каолин (см. КАОЛИН), иониты (см. ИОНИТЫ) и др.) служат противоядиями, поглощая и удаляя из организма вредные вещества. Адсорбенты обычно имеют большую удельную поверхность — до нескольких сотен м 2 /г. В промышленности адсорбцию осуществляют в специальных аппаратах — адсорберах; применяют для осушки газов, очистки органических жидкостей и воды, улавливания ценных или вредных отходов производства.
АДСОРБЦИЯ (от лат. ad — на — при и sorbeo — поглощаю), поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. Адсорбенты обычно имеют большую удельную поверхность — до нескольких сотен м²/г. Физическая адсорбция — результат действия дисперсионных или электростатических сил. Если адсорбция сопровождается химической реакцией поглощаемого вещества с адсорбентом, то она называется хемосорбцией. В промышленности адсорбцию осуществляют в специальных аппаратах — адсорберах; применяют для осушки газов, очистки органических жидкостей и воды, улавливания ценных или вредных отходов производства.
Поглощение частиц газа или растворенного вещества поверхностным слоем жидкого или твердого вещества.
[От лат. ad — к и sorbere — поглощать, всасывать]
АДСОРБЦИЯ (от латинского ad — на, при и sorbeo — поглощаю), поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. В промышленности адсорбцию осуществляют в аппаратах — адсорберах. На адсорбции основаны осушка газов, очистка органических жидкостей и воды, улавливание ценных или вредных отходов производства.
Физико-химическое явление, заключающееся в поглощении свободных молекул газа или жидкости поверхностным слоем некоторого тела, называемого адсорбентом.
Источник статьи: http://sanstv.ru/dict/%D0%B0%D0%B4%D1%81%D0%BE%D1%80
Словари
1. соотн. с сущ. адсорбция, связанный с ним
2. Свойственный адсорбции, характерный для неё.
адсорбцио́нный, адсорбцио́нная, адсорбцио́нное, адсорбцио́нные, адсорбцио́нного, адсорбцио́нной, адсорбцио́нных, адсорбцио́нному, адсорбцио́нным, адсорбцио́нную, адсорбцио́нною, адсорбцио́нными, адсорбцио́нном, адсорбцио́нен, адсорбцио́нна, адсорбцио́нно, адсорбцио́нны, адсорбцио́ннее, поадсорбцио́ннее, адсорбцио́нней, поадсорбцио́нней
Адсорбцио́нный насо́с — вакуумный насос, действие которого основано на явлении адсорбции откачиваемого газа на поверхности цеолита или другого газопоглощающего вещества, в том числе геттера.
АДСОРБЦИОННЫЙ НАСОС — АДСОРБЦИО́ННЫЙ НАСО́С, вакуумный насос, действие которого основано на явлении адсорбции откачиваемого газа на поверхности цеолита или др. газопоглощающего вещества, в т. ч. геттера (см. ГЕТТЕР).
АДСОРБЦИОННЫЙ НАСОС — вакуумный насос, действие которого основано на явлении адсорбции откачиваемого газа на поверхности цеолита или др. газопоглощающего вещества, в т. ч. геттера.
Поглощение, всасывание вещества из раствора или газа поверхностью твёрдого тела или поверхностным слоем жидкости.
АДСО́РБЦИЯ -и; ж. [от лат. ad- к и sorbere — поглощать, всасывать]. Поглощение вещества из газа или раствора поверхностным слоем жидкого или твёрдого адсорбента (используется в химии, технике и т.п. для разделения и очистки веществ).
адсо́рбция (от лат. ad — на, при и sorbeo — поглощаю), поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. Адсорбенты обычно имеют большую удельную поверхность — до нескольких сотен м 2 /г. Физическая адсорбция — результат действия дисперсионных или электростатических сил. Если адсорбция сопровождается химической реакцией поглощаемого вещества с адсорбентом, то она называется хемосорбцией. В промышленности адсорбция осуществляют в специальных аппаратах — адсорберах; применяют для осушки газовой очистки органических жидкостей и воды, улавливания ценных или вредных отходов производства.
АДСОРБЦИЯ — АДСО́РБЦИЯ (от лат. ad — на, при и sorbeo — поглощаю), поглощение какого-либо вещества (адсорбата) из газообразной среды или раствора поверхностным слоем жидкости или твердого тела (адсорбентом). Различают два вида адсорбции: физическую и химическую (хемосорбцию (см. ХЕМОСОРБЦИЯ)). Менее прочная физическая адсорбция не сопровождается существенными изменениями молекул адсорбата. Она обусловлена силами межмолекулярного взаимодействия (см. МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ), которые связывают молекулы в жидкостях и некоторых кристаллах и проявляются в поведении сильно сжатых газов. Существенное отличие физической адсорбции — ее обратимость. При хемосорбции молекулы адсорбата и адсорбента образуют химические соединения. Часто адсорбция обусловлена и физическими и химическими силами, поэтому не существует четкой границы между физической адсорбцией и хемосорбцией.
Явление адсорбции связано с тем, что силы межмолекулярного взаимодействия на грАݐؑƐՠраздела фаз нескомпенсированы, и, следовательно, пограничный слой обладает избытком энергии — свободной поверхностной энергией (см. ПОВЕРХНОСТНАЯ ЭНЕРГИЯ). В результате притяжения поверхностью раздела фаз находящихся вблизи нее молекул адсорбата свободная поверхностная энергия уменьшается, т.е. процессы адсорбции энергетически выгодны. Адсорбция всегда является экзотермическим процессом, т. е. протекает с выделением теплоты адсорбции Hs.
Значения энтальпии (см. ЭНТАЛЬПИЯ) физической адсорбции достаточно велики (порядка 10 ккал/моль) из-за слабых атомных взаимодействий. Физическая адсорбция легко обратима, поэтому, например, в случае адсорбции газа, достаточно легко может осуществиться замена адсорбированного слоя газа другим газом. Это явление называется обменной адсорбцией.
Процесс адсорбции заканчивается установлением адсорбционного равновесия между адсорбентом и адсорбатом. Условием равновесия является равенство химических потенциалов обеих фаз. С ростом температуры или давления адсорбата в объеме увеличивается частота попаданий молекул адсорбата на поверхность адсорбента; пропорционально ей возрастает скорость адсорбции и увеличивается равновесное количество адсорбированных молекул. Кривые зависимости равновесной адсорбции от температуры или давления адсорбата называются, соответственно, изобарой и изотермой адсорбции.
Адсорбированные молекулы могут перемещаться по поверхности, совершая при этом колебательные движения, то приближаясь к поверхности, то удаляясь от нее. Время, в течение которого молекула находится на поверхности, называется временем адсорбции. С ростом температуры время адсорбции уменьшается: чем выше температура, тем интенсивнее колебательное движение, и больше вероятность того, что в процессе таких колебаний связь молекулы с поверхностью будет разорвана и молекула покинет поверхность. Процесс, при котором адсорбированные молекулы покидают поверхность, называется десорбция (см. ДЕСОРБЦИЯ). Скоростью адсорбции (десорбции) называется отношение количества молекул, адсорбирующихся (десорбирующихся) за единицу времени, к единице поверхности или массы адсорбента. Если скорости адсорбции и десорбции равны друг другу, устанавливается адсорбционное равновесие. В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и др.).
В случае контакта поверхности кристалла и жидкого раствора из жидкости на поверхность твердого тела переходят молекулы, находящиеся в растворе. Между их концентрациями в растворе и на поверхности адсорбента устанавливается равновесие. Вещества, адсорбируемые из раствора, называются поверхностно-активными веществами (см. ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА (ПАВ)) (ПАВ). Высокая адсорбируемость ПАВов связана с сильным снижением поверхностного натяжения (см. ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ) раствора на данной поверхности по сравнению с поверхностным натяжением чистого растворителя на этой же поверхности. Инактивные вещества повышают поверхностное натяжение и ухудшают адсорбцию.
Если теплота адсорбции сравнима с поверхностной энергией адсорбента, то в процессе адсорбции может существенно меняться кристаллическая структура поверхности твердого тела, причем при физической адсорбции перестройке подвергаются в основном поверхности молекулярных кристаллов, а в случае хемосорбции изменения поверхностной структуры наблюдаются даже для металлов и ионных кристаллов. Адсорбированные на поверхности пленки сильно изменяют свойства поверхности, а в ряде случаев затрагивают и более толстые приповерхностные слои.
Адсорбция играет важную роль во многих природных процессах, таких, как обогащение почв и образование вторичных рудных месторождений. Именно благодаря адсорбции осуществляется первая стадия поглощения различных веществ из окружающей среды клетками и тканями биологических систем, функционирование биологических мембран, первые этапы взаимодействия ферментов с субстратом, защитные реакции против токсичных веществ. Многие адсорбенты (активный уголь, каолин (см. КАОЛИН), иониты (см. ИОНИТЫ) и др.) служат противоядиями, поглощая и удаляя из организма вредные вещества. Адсорбенты обычно имеют большую удельную поверхность — до нескольких сотен м 2 /г. В промышленности адсорбцию осуществляют в специальных аппаратах — адсорберах; применяют для осушки газов, очистки органических жидкостей и воды, улавливания ценных или вредных отходов производства.
АДСОРБЦИЯ (от лат. ad — на — при и sorbeo — поглощаю), поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. Адсорбенты обычно имеют большую удельную поверхность — до нескольких сотен м²/г. Физическая адсорбция — результат действия дисперсионных или электростатических сил. Если адсорбция сопровождается химической реакцией поглощаемого вещества с адсорбентом, то она называется хемосорбцией. В промышленности адсорбцию осуществляют в специальных аппаратах — адсорберах; применяют для осушки газов, очистки органических жидкостей и воды, улавливания ценных или вредных отходов производства.
Поглощение частиц газа или растворенного вещества поверхностным слоем жидкого или твердого вещества.
[От лат. ad — к и sorbere — поглощать, всасывать]
АДСОРБЦИЯ (от латинского ad — на, при и sorbeo — поглощаю), поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. В промышленности адсорбцию осуществляют в аппаратах — адсорберах. На адсорбции основаны осушка газов, очистка органических жидкостей и воды, улавливание ценных или вредных отходов производства.
Физико-химическое явление, заключающееся в поглощении свободных молекул газа или жидкости поверхностным слоем некоторого тела, называемого адсорбентом.
Источник статьи: http://sanstv.ru/dict/%D0%B0%D0%B4%D1%81%D0%BE%D1%80%D0%B1%D1%86%D0%B8%D0%B8
Словари
— То, что поглощается, научным языком.
Вещество, на поверхности которого происходит адсорбция.
АДСОРБЕ́НТ -а; м. Адсорбирующее вещество.
Вещество, способное захватывать своим поверхностным слоем молекулы газа или жидкости (адсорбатов).
адсорбе́нт, адсорбе́нты, адсорбе́нта, адсорбе́нтов, адсорбе́нту, адсорбе́нтам, адсорбе́нтом, адсорбе́нтами, адсорбе́нте, адсорбе́нтах
— тело, на поверхности которого происходит адсорбция распространенные адсорбенты — активированный уголь, силикагель и др.
— Тело, на поверхности которого проходит поглощение вещества из раствора или газа.
Аппарат, в котором осуществляют абсорбцию.
АДСО́РБЕР -а; м. Аппарат, в котором осуществляют адсорбцию.
адсо́рбер, адсо́рберы, адсо́рбера, адсо́рберов, адсо́рберу, адсо́рберам, адсо́рбером, адсо́рберами, адсо́рбере, адсо́рберах
— основной аппарат установки, в которой осуществляют адсорбцию.
— Аппарат для поглощения веществ из растворов или газов на поверхности твёрдого тела или жидкости.
адсорби́рованный; кратк. форма -ан, -ана
адсорби́рованный, -ан, -ана, -ано, -аны
Поглощать, всасывать вещество из раствора или газа поверхностью твёрдого тела или поверхностным слоем жидкости.
АДСОРБИ́РОВАТЬ -рую, -руешь; адсорби́рованный; -ван, -а, -о; св. и нсв. Произвести — производить адсорбцию.
◁ Адсорби́роваться, -руется; страд.
без доп. физ., хим. Произвести (производить) адсорбцию.
— рую, рует, несов. и сов. , что (нем. adsorbieren адсорбировать(ся)
адсорби́ровать(ся), -би́рую, -би́руешь, -би́рует(ся)
ад/сорб/и́р/ова/ть(ся) [ср. аб/сорб/и́р/ова/ть(ся)].
Адсорби́рующие сре́дства (мед.), тонко измельчённые нерастворимые в воде порошки; применяются при заболеваниях кожи в форме присыпок и внутрь при отравлениях и некоторых желудочно-кишечных заболеваниях.
АДСОРБИРУЮЩИЕ СРЕДСТВА — АДСОРБИ́РУЮЩИЕ СРЕ́ДСТВА, в медицине — тонко измельченные нерастворимые в воде порошки; применяются при заболеваниях кожи в форме присыпок и внутрь при отравлениях и некоторых желудочно-кишечных заболеваниях.
АДСОРБИРУЮЩИЕ СРЕДСТВА — в медицине — тонко измельченные нерастворимые в воде порошки; применяются при заболеваниях кожи в форме присыпок и внутрь при отравлениях и некоторых желудочно-кишечных заболеваниях.
АДСОРБИ́РУЮЩИЙ -ая, -ее. Обладающий способностью к адсорбции. А-ие вещества.
1. соотн. с сущ. адсорбция, связанный с ним
2. Свойственный адсорбции, характерный для неё.
адсорбцио́нный, адсорбцио́нная, адсорбцио́нное, адсорбцио́нные, адсорбцио́нного, адсорбцио́нной, адсорбцио́нных, адсорбцио́нному, адсорбцио́нным, адсорбцио́нную, адсорбцио́нною, адсорбцио́нными, адсорбцио́нном, адсорбцио́нен, адсорбцио́нна, адсорбцио́нно, адсорбцио́нны, адсорбцио́ннее, поадсорбцио́ннее, адсорбцио́нней, поадсорбцио́нней
Адсорбцио́нный насо́с — вакуумный насос, действие которого основано на явлении адсорбции откачиваемого газа на поверхности цеолита или другого газопоглощающего вещества, в том числе геттера.
АДСОРБЦИОННЫЙ НАСОС — АДСОРБЦИО́ННЫЙ НАСО́С, вакуумный насос, действие которого основано на явлении адсорбции откачиваемого газа на поверхности цеолита или др. газопоглощающего вещества, в т. ч. геттера (см. ГЕТТЕР).
АДСОРБЦИОННЫЙ НАСОС — вакуумный насос, действие которого основано на явлении адсорбции откачиваемого газа на поверхности цеолита или др. газопоглощающего вещества, в т. ч. геттера.
Поглощение, всасывание вещества из раствора или газа поверхностью твёрдого тела или поверхностным слоем жидкости.
АДСО́РБЦИЯ -и; ж. [от лат. ad- к и sorbere — поглощать, всасывать]. Поглощение вещества из газа или раствора поверхностным слоем жидкого или твёрдого адсорбента (используется в химии, технике и т.п. для разделения и очистки веществ).
адсо́рбция (от лат. ad — на, при и sorbeo — поглощаю), поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. Адсорбенты обычно имеют большую удельную поверхность — до нескольких сотен м 2 /г. Физическая адсорбция — результат действия дисперсионных или электростатических сил. Если адсорбция сопровождается химической реакцией поглощаемого вещества с адсорбентом, то она называется хемосорбцией. В промышленности адсорбция осуществляют в специальных аппаратах — адсорберах; применяют для осушки газовой очистки органических жидкостей и воды, улавливания ценных или вредных отходов производства.
АДСОРБЦИЯ — АДСО́РБЦИЯ (от лат. ad — на, при и sorbeo — поглощаю), поглощение какого-либо вещества (адсорбата) из газообразной среды или раствора поверхностным слоем жидкости или твердого тела (адсорбентом). Различают два вида адсорбции: физическую и химическую (хемосорбцию (см. ХЕМОСОРБЦИЯ)). Менее прочная физическая адсорбция не сопровождается существенными изменениями молекул адсорбата. Она обусловлена силами межмолекулярного взаимодействия (см. МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ), которые связывают молекулы в жидкостях и некоторых кристаллах и проявляются в поведении сильно сжатых газов. Существенное отличие физической адсорбции — ее обратимость. При хемосорбции молекулы адсорбата и адсорбента образуют химические соединения. Часто адсорбция обусловлена и физическими и химическими силами, поэтому не существует четкой границы между физической адсорбцией и хемосорбцией.
Явление адсорбции связано с тем, что силы межмолекулярного взаимодействия на грАݐؑƐՠраздела фаз нескомпенсированы, и, следовательно, пограничный слой обладает избытком энергии — свободной поверхностной энергией (см. ПОВЕРХНОСТНАЯ ЭНЕРГИЯ). В результате притяжения поверхностью раздела фаз находящихся вблизи нее молекул адсорбата свободная поверхностная энергия уменьшается, т.е. процессы адсорбции энергетически выгодны. Адсорбция всегда является экзотермическим процессом, т. е. протекает с выделением теплоты адсорбции Hs.
Значения энтальпии (см. ЭНТАЛЬПИЯ) физической адсорбции достаточно велики (порядка 10 ккал/моль) из-за слабых атомных взаимодействий. Физическая адсорбция легко обратима, поэтому, например, в случае адсорбции газа, достаточно легко может осуществиться замена адсорбированного слоя газа другим газом. Это явление называется обменной адсорбцией.
Процесс адсорбции заканчивается установлением адсорбционного равновесия между адсорбентом и адсорбатом. Условием равновесия является равенство химических потенциалов обеих фаз. С ростом температуры или давления адсорбата в объеме увеличивается частота попаданий молекул адсорбата на поверхность адсорбента; пропорционально ей возрастает скорость адсорбции и увеличивается равновесное количество адсорбированных молекул. Кривые зависимости равновесной адсорбции от температуры или давления адсорбата называются, соответственно, изобарой и изотермой адсорбции.
Адсорбированные молекулы могут перемещаться по поверхности, совершая при этом колебательные движения, то приближаясь к поверхности, то удаляясь от нее. Время, в течение которого молекула находится на поверхности, называется временем адсорбции. С ростом температуры время адсорбции уменьшается: чем выше температура, тем интенсивнее колебательное движение, и больше вероятность того, что в процессе таких колебаний связь молекулы с поверхностью будет разорвана и молекула покинет поверхность. Процесс, при котором адсорбированные молекулы покидают поверхность, называется десорбция (см. ДЕСОРБЦИЯ). Скоростью адсорбции (десорбции) называется отношение количества молекул, адсорбирующихся (десорбирующихся) за единицу времени, к единице поверхности или массы адсорбента. Если скорости адсорбции и десорбции равны друг другу, устанавливается адсорбционное равновесие. В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и др.).
В случае контакта поверхности кристалла и жидкого раствора из жидкости на поверхность твердого тела переходят молекулы, находящиеся в растворе. Между их концентрациями в растворе и на поверхности адсорбента устанавливается равновесие. Вещества, адсорбируемые из раствора, называются поверхностно-активными веществами (см. ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА (ПАВ)) (ПАВ). Высокая адсорбируемость ПАВов связана с сильным снижением поверхностного натяжения (см. ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ) раствора на данной поверхности по сравнению с поверхностным натяжением чистого растворителя на этой же поверхности. Инактивные вещества повышают поверхностное натяжение и ухудшают адсорбцию.
Если теплота адсорбции сравнима с поверхностной энергией адсорбента, то в процессе адсорбции может существенно меняться кристаллическая структура поверхности твердого тела, причем при физической адсорбции перестройке подвергаются в основном поверхности молекулярных кристаллов, а в случае хемосорбции изменения поверхностной структуры наблюдаются даже для металлов и ионных кристаллов. Адсорбированные на поверхности пленки сильно изменяют свойства поверхности, а в ряде случаев затрагивают и более толстые приповерхностные слои.
Адсорбция играет важную роль во многих природных процессах, таких, как обогащение почв и образование вторичных рудных месторождений. Именно благодаря адсорбции осуществляется первая стадия поглощения различных веществ из окружающей среды клетками и тканями биологических систем, функционирование биологических мембран, первые этапы взаимодействия ферментов с субстратом, защитные реакции против токсичных веществ. Многие адсорбенты (активный уголь, каолин (см. КАОЛИН), иониты (см. ИОНИТЫ) и др.) служат противоядиями, поглощая и удаляя из организма вредные вещества. Адсорбенты обычно имеют большую удельную поверхность — до нескольких сотен м 2 /г. В промышленности адсорбцию осуществляют в специальных аппаратах — адсорберах; применяют для осушки газов, очистки органических жидкостей и воды, улавливания ценных или вредных отходов производства.
АДСОРБЦИЯ (от лат. ad — на — при и sorbeo — поглощаю), поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. Адсорбенты обычно имеют большую удельную поверхность — до нескольких сотен м²/г. Физическая адсорбция — результат действия дисперсионных или электростатических сил. Если адсорбция сопровождается химической реакцией поглощаемого вещества с адсорбентом, то она называется хемосорбцией. В промышленности адсорбцию осуществляют в специальных аппаратах — адсорберах; применяют для осушки газов, очистки органических жидкостей и воды, улавливания ценных или вредных отходов производства.
Поглощение частиц газа или растворенного вещества поверхностным слоем жидкого или твердого вещества.
[От лат. ad — к и sorbere — поглощать, всасывать]
АДСОРБЦИЯ (от латинского ad — на, при и sorbeo — поглощаю), поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. В промышленности адсорбцию осуществляют в аппаратах — адсорберах. На адсорбции основаны осушка газов, очистка органических жидкостей и воды, улавливание ценных или вредных отходов производства.
Физико-химическое явление, заключающееся в поглощении свободных молекул газа или жидкости поверхностным слоем некоторого тела, называемого адсорбентом.
Источник статьи: http://sanstv.ru/dict/%D0%B0%D0%B4%D1%81%D0%BE%D1%80
адсорбция
Энциклопедический словарь . 2009 .
Полезное
Смотреть что такое «адсорбция» в других словарях:
АДСОРБЦИЯ — (от лат. ad на, при и sorbeo поглощаю), процесс, приводящий к аномально высокой концентрации в ва (а д с о р б а т а) из газообразной или жидкой среды на поверхности её раздела с жидкостью или тв. телом (а д с о р б е н т о м). Частный случай… … Физическая энциклопедия
Адсорбция — [adsorptio всасывание, поглощение] поглощение поверхностью фазово инородного тела (адсорбента) каких либо веществ (адсорбатов) из смежной газовой или жидкой среды, протекающее на границе раздела фаз. А. из газовой фазы или из растворов нашла… … Геологическая энциклопедия
АДСОРБЦИЯ — (от лат. ad на при и sorbeo поглощаю), поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. Адсорбенты обычно имеют большую удельную поверхность до нескольких сотен м²/г. Физическая адсорбция… … Большой Энциклопедический словарь
адсорбция — Самопроизвольное изменение концентрации раствора или газовой смеси вблизи поверхности раздела фаз. Примечание Адсорбирующее твердое тело называется адсорбентом, адсорбируемое вещество адсорбатом. [ГОСТ 17567 81] адсорбция Удерживание физическими… … Справочник технического переводчика
Адсорбция — – поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ и м. А. А. Гвоздева, Москва, 2007 г. 110 стр.]… … Энциклопедия терминов, определений и пояснений строительных материалов
АДСОРБЦИЯ — (от лат. ad на и sorbeo поглощаю) поглощение различных веществ из растворов или воздушной среды поверхностями твердых тел. Может быть физической или химической (с образованием химических соединений), чаще всего сопровождается выделением тепла.… … Экологический словарь
адсорбция — поглощение вещества из раствора или газа поверхностным слоем жидкости или твердого тела (адсорбентом); играет важную роль в биол. системах, широко применяется в биохимии для разделения и очистки веществ. (Источник: «Микробиология: словарь… … Словарь микробиологии
адсорбция — и, ж. adsorption f. <лат. ad при + sorbere поглощать, всасывать. спец. Поглощение, всасывание вещества из раствора или газа поверхностью твердого тела или поверхностным слоем жидкости. Явления адсорбции. Адсорбция газов. Работы по изучению… … Исторический словарь галлицизмов русского языка
адсорбция — – самопроизвольное изменение концентрации растворенного вещества на границе раздела фаз. Общая химия : учебник / А. В. Жолнин [1] Адсорбция – поглощение вещества поверхностью твердого или жидкого сорбента. Словарь по аналитической химии [3] … Химические термины
АДСОРБЦИЯ — (от латинского ad на, при и sorbeo поглощаю), поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. В промышленности адсорбцию осуществляют в аппаратах адсорберах. На адсорбции основаны осушка газов,… … Современная энциклопедия
АДСОРБЦИЯ — АДСОРБЦИЯ, притяжение газа или жидкости к поверхности твердого тела или жидкости, в отличие от абсорбции, при которой подразумевается проникновение одного вещества в другое (как, например, губка пропитывается водой). Количество адсорбируемого… … Научно-технический энциклопедический словарь
Источник статьи: http://dic.academic.ru/dic.nsf/es/3726/%D0%B0%D0%B4%D1%81%D0%BE%D1%80%D0%B1%D1%86%D0%B8%D1%8F
Большая Энциклопедия Нефти и Газа
Адсорбционно-активная среда
Адсорбционно-активная среда сама по себе не вызывает разрушения, она способствует, помогает ему. Наличие адсорбционного механизма воздействия на твердые тела означает, что данные о механических свойствах материалов, полученные при измерениях в одних средах, нельзя без проверки переносить на другие среды. По данным работы [4], время до разрушения образцов из сплава ЭИ437Б при температуре 800 С в натрии могло быть в 5 и более раз короче ( в зависимости от нагрузки), чем при испытании на воздухе, заметно больше была и скорость ползучести в натрии. [1]
Поскольку сильно адсорбционно-активные среды могут качественно изменять механические свойства металлов, представляло значительный интерес исследование длительной прочности в условиях резкого понижения свободной поверхностной энергии — в присутствии расплавленных металлических покрытий. Соответствующие опыты были проведены на моно-иполикристал-лических образцах цинка, кадмия и олова при использовании в качестве сильно поверхностно-активных покрытий ртути и жидкого галлия, а также на некоторых сталях, покрытых различными легкоплавкими эвтектиками. [2]
Способность адсорбционно-активных сред заметно облегчать разрушение твердых тел издавна используется при измельчении ( см. § 5 гл. IV): при помоле руды перед флотационным обогащением, цемен та и в других процессах диспергирования. Ребиндер указывал, что тонкое измельчение не может быть достигнуто чисто механическим путем: развитие огромной поверхности требует вмешательства физико-химических факторов для управления явлениями на возникающих поверхностях. Роль адсорбционного понижения прочности состоит при этом не только в облегчении разрушения твердого тела, но и в предотвращении агрегации, в разрушении коагуляционных контактов, возникающих между частицами. [3]
Способность адсорбционно-активных сред заметно облегчать разрушение твердых тел издавна используется при измельчении ( см. гл. [4]
В адсорбционно-активной среде ионогенные ПАВ повышают потенциал двойного электрического, слоя и тем самым увеличивают силы отталкивания между частицами благодаря возникновению на их поверхности соответствующего заряда. Эти же вещества могут адсорбироваться на границе раздела, например, т / в таким образом, что их неполярные углеводородные цепи ориентируются в сторону жидкой фазы и, как следствие, происходит агрегация частиц. ПАВ, которые при малом содержании способствуют агрегации частиц в водных средах, часто действуют как дефлокулянты при более высокой концентрации. Считают, что это явление связано с образованием второго, адсорбционного слоя, в котором полярные группы ориентируются в сторону водной фазы. Во избежание этого нежелательного явления обратной ориентации в водных суспензиях твердых тел в качестве дефлокулянтов применяют вещества, которые содержат несколько гидрофильных групп и в силу своего молекулярного строения менее склонны к обратной ориентации. В дефлокуляции и стабилизации суспензий участвуют также и сольватные оболочки дисперсионной среды вокруг частиц. Неионогенные ПАВ типа полигликолевых эфиров алкил ( ОСН2 — СН2) Ж ОН создают гидратные слои благодаря тому, что эти цепи, по крайней мере частично, ориентируются в сторону дисперсионной среды и образуют за счет водородных связей оболочки из молекул воды. Они препятствуют фло-куляции частиц благодаря сопротивлению сдвигу и отсутствию заметного поверхностного натяжения на границе сол ьватного слоя и свободной среды и в связи с расклинивающим давлением. [5]
Первичным действием адсорбционно-активной среды , как уже отмечалось, всегда оказывается понижение сопротивления деформированию. Однако конечным результатом; в случае пластичных тел ( металлов) может оказаться повышение прочности — значительное упрочнение вследствие сильных искажений решетки поверхностных зерен в результате значительно большей, чем в отсутствие адсорбционно-активной среды, предшествующей пластической деформации. [6]
Механизм действия адсорбционно-активной среды может быть связан также с процессом зарождения источников дислокаций. [7]
В присутствии сильно адсорбционно-активной среды положение может существенно измениться. [8]
Следует подчеркнуть, что адсорбционно-активная среда сама по себе не создает дефектов в теле, она лишь облегчает их развитие. Поэтому идеальные нитевидные монокристаллы, лишенные дефектов, могут оказаться нечувствительными к влиянию среды. [9]
Следует подчеркнуть, что адсорбционно-активная среда сама по себе не создает дефектов в теле, она лишь облегчает их развитие. Поэтому идеальные нитевидные монокристаллы, лишенные дефектов, могут оказаться нечувствительными к влия нию среды. [10]
Деформирование стеклообразного полимера в адсорбционно-активной среде приводит к образованию микротрещин, заполненных высокоориентированным и высокодисперсным материалом. Работа, затрачиваемая на преодоление межмолекулярных сил при диспергировании полимера, запасается системой в виде свободной энергии на межфазной поверхности. Избыток свободной энергии делает систему термодинамически неустойчивой. Учитывая высокую гибкость образующихся при вытяжке полимера в ААС структурных элементов — фибрилл и их коллоидные размеры, можно полагать, что такая система, как и всякая коллоидная система, способна участвовать в броуновском движении и, следовательно, самопроизвольно уменьшать межфазную поверхность. Уменьшение поверхности возможно путем изгибания и сворачивания на себя отдельных фибрилл с образованием коа-гуляционной межфибриллярной структуры. Коагуляция гибких структурных элементов путем сворачивания неизбежно должна приводить к сближению противоположных стенок микротрещин и сокращению размеров образца. [11]
Холодная вытяжка полимеров в адсорбционно-активных средах имеет существенные отличия от соответствующего процесса, происходящего на воздухе. Хотя механизм деформации принципиально один и тот же для обоих случаев вплоть до стадии фибрил-лизации, присутствие адсорбционно-активной среды, предотвращающей коагуляцию фибрилл в монолитную шейку, решающим образом изменяет процесс холодной вытяжки. Микрорастрескивание и переход полимерного материала в новое высокодисперсное ориентированное состояние обусловливает возникновение специфической высокопористой структуры, обладающей целым комплексом уникальных физико-химических и механических свойств. [12]
Ускорение ползучести в условиях действия адсорбционно-активных сред отмечалось неоднократно. В работе [261] рассматривается один из возможных механизмов влияния снижения свободной поверхностной энергии на некоторые механические характеристики твердых тел, в том числе и на скорость ползучести. Сущность механизма заключается в том, что свободная поверхность, наряду с межзеренной, рассматривается как основной источник точечных дефектов ( вакансий) в объеме поликристалла. Мощность этого источника зависит от равновесной концентрации Cj изломов на поверхностных ступенях атомарной высоты. Элементарный акт образования вакансии на поверхности заключается в переходе атома твердого тела на излом атомарной ступени. [13]
Деформирование твердого тела в присутствии адсорбционно-активной среды в условиях, когда развития трещин и разрушения не происходят, позволяет выявить другую форму проявления эффекта, а именно адсорбционное пластифицирование твердого тела. Сущность этой формы эффекта Ребиндера состоит в том, что адсорбционно-активные среды, понижая поверхностную энергию, облегчают развитие новых поверхностей, которое всегда происходит при деформировании твердого тела. [14]
Ускорение ползучести в условиях действия адсорбционно-активных сред отмечалось неоднократно. В работе [261] рассматривается один из возможных механизмов влияния снижения свободной поверхностной энергии на некоторые механические характеристики твердых тел, в том числе и на скорость ползучести. Сущность механизма заключается в том, что свободная поверхность, наряду с межзеренной, рассматривается как основной источник точечных дефектов ( вакансий) в объеме поликристалла. Мощность этого источника зависит от равновесной концентрации Cj изломов на поверхностных ступенях атомарной высоты. Элементарный акт образования вакансии на поверхности заключается в переходе атома твердого тела на излом атомарной ступени. [15]
Источник статьи: http://www.ngpedia.ru/id472291p1.html
Адсорбирующие средства
1. Малая медицинская энциклопедия. — М.: Медицинская энциклопедия. 1991—96 гг. 2. Первая медицинская помощь. — М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. — М.: Советская энциклопедия. — 1982—1984 гг .
Полезное
Смотреть что такое «Адсорбирующие средства» в других словарях:
АДСОРБИРУЮЩИЕ СРЕДСТВА — в медицине тонко измельченные нерастворимые в воде порошки; применяются при заболеваниях кожи в форме присыпок и внутрь при отравлениях и некоторых желудочно кишечных заболеваниях … Большой Энциклопедический словарь
адсорбирующие средства — (мед.), тонко измельчённые нерастворимые в воде порошки; применяются при заболеваниях кожи в форме присыпок и внутрь при отравлениях и некоторых желудочно кишечных заболеваниях. * * * АДСОРБИРУЮЩИЕ СРЕДСТВА АДСОРБИРУЮЩИЕ СРЕДСТВА, в медицине… … Энциклопедический словарь
адсорбирующие средства — (adsorbentia) лекарственные средства, способные поглощать различные вещества из газов или жидкостей; используются для удаления вредных веществ и избытка газов из желудочно кишечного тракта (напр., активированный уголь), а также наружно для… … Большой медицинский словарь
Адсорбирующие средства — в медицине, индифферентные, нерастворимые Адсорбенты. Активный уголь (См. Метеоризм), карболен (См. Метеоризм), обладающие большой адсорбционной способностью, применяют внутрь при отравлениях солями тяжёлых металлов, алкалоидами, при… … Большая советская энциклопедия
АДСОРБИРУЮЩИЕ СРЕДСТВА — адсорбирующие средства, адсорбенты, высокодисперсные фармакологически нейтральные вещества с большой наружной (непористые) или внутренней (пористые) поверхностью, на которой происходит адсорбция веществ из соприкасающихся с поверхностью газов или … Ветеринарный энциклопедический словарь
Обволакивающие средства — I Обволакивающие средства лекарственные средства, образующие с водой коллоидные растворы или взвеси и защищающие слизистые оболочки и кожу от раздражающего действия физических и химических факторов. К обволакивающим относят некоторые препараты… … Медицинская энциклопедия
Жизненно необходимые и важнейшие лекарственные средства — (ЖНВЛС) перечень лекарственных средств, утверждаемый Правительством Российской Федерации в целях государственного регулирования цен на лекарственные средства. Перечень ЖНВЛС охватывает практически все виды медицинской помощи,… … Википедия
ЛЕКАРСТВЕННЫЕ СРЕДСТВА — в ветеринарии, в ва, используемые для предупреждения, устранения или ослабления болезненного процесса у с. х. ж ных. Применяют также в качестве стимуляторов роста, продуктивности, плодовитости и резистентности организма ж ного. Л. могут оказывать … Сельско-хозяйственный энциклопедический словарь
лекарственные средства — в ветеринарии, вещества, используемые для предупреждения, устранения или ослабления болезненного процесса у сельскохозяйственных животных. Применяют также в качестве стимуляторов роста, продуктивности, плодовитости и резистентности организма… … Сельское хозяйство. Большой энциклопедический словарь
Источник статьи: http://dic.academic.ru/dic.nsf/enc_medicine/1615/%D0%90%D0%B4%D1%81%D0%BE%D1%80%D0%B1%D0%B8%D1%80%D1%83%D1%8E%D1%89%D0%B8%D0%B5
Адсорбционно активный как пишется
ИЗУЧЕНИЕ АДСОРБЦИОННОЙ АКТИВНОСТИ СОРБЕНТОВ РАЗЛИЧНОЙ ПРИРОДЫ
Автор работы награжден дипломом победителя I степени
В условиях высокого антропогенного воздействия на окружающую среду в организм человека попадает целый ряд вредных веществ, в том числе тяжелых металлов. Они, как и их производные входят в группу наиболее опасных экотоксикантов, и являются потенциальными канцерогенами для человека. В связи с этим поиск и разработка безопасных и эффективных средств для профилактики и лечения воздействия тяжелых металлов является важной медицинской и фармацевтической задачей.
Метод сорбционной детоксикации занял свое место среди прочих методов лечения. Наибольшее распространение из энтеральных сорбентов получили препараты активированного угля и лигнина [10]. Согласно литературным данным активированный уголь поглощает различные газы, токсины, некоторые тяжелые металлы. Другие энтеросорбенты, например, на основе лигнина, обладают высокой сорбционной активностью по отношению к микроорганизмам. Однако количественных данных об адсорбционной активности других энтеросорбентов по отношению к катионам тяжелых металлов очень мало. Многие препараты, по наблюдениям врачей, не отвечают в полной мере требованиям, предъявляемым к медицинским сорбентам. На сегодняшний день пектиновые энтеросорбенты, которые способны эффективно связывать ионы тяжелых металлов и обладают широким спектром физиологических эффектов, являются наиболее перспективными [9,10,11].
Цель работы – сравнение адсорбционной активности энтеросорбентов, приобретенных в аптечной сети, и яблочного и морковного жома по отношению к катионам Pb 2+ , Cu 2+ , Fe 3+ .
Объектом исследования являлись энтеросорбенты (приложение 1): уголь активированный различных производителей, белый уголь, «Фильтрум», «Полисорб», а также яблочный и морковный жом, полученный после переработки плодов на сок и высушенный естественным путем.
Для определения сорбционной активности мы использовали колориметрический метод (для определения остаточного содержания катионов меди и железа) и кондуктометрический метод (для определения остаточного содержания катионов свинца). В работе мы использовали приборы цифровой химической лаборатории: датчик электропроводности и спектрофотоколориметр.
Современные представления об экологии тяжелых металлов, природе адсорбции и актуальных сорбентах
Тяжелые металлы и их влияние на организм человека
К тяжелым металлам относят свинец, ртуть, медь, кадмий, кобальт, молибден, железо, цинк, никель, хром.
В современных условиях наибольшим источником загрязнения свинцом среды обитания считаются выхлопы бензиновых двигателей автомашин, поскольку в бензин добавляется тетраэтилсвинец для повышения октанового числа. Свинец препятствует одной из ступеней биосинтеза гема, считается сильнейшим нейротоксином, вызывает повышенную агрессивность. Хроническое отравление свинцом постепенно приводит к нарушениям функций почек, нервной системы, анемии[8].
Медь является необходимым кофактором для нескольких важнейших ферментов, катализирующих разнообразные окислительно-восстановительные реакции, без которых нормальная жизнедеятельность невозможна. Медь входит в качестве необходимого элемента в состав церуллоплазмина цитохромоксидазы, тирозиназы и других белков. В тканях здорового организма концентрация меди в течение всей жизни поддерживается строго постоянной. В норме существует система, препятствующая непрерывному накоплению меди в тканях путем ограничения ее абсорбции или стимуляции ее выведения. Избыток меди в тканях вызывает токсикоз: ведет к остановке роста, гемолизу, снижению содержания гемоглобина, к деградации тканей печени, почек, мозга.
Избыток железа встречается гораздо реже, чем недостаток. Такая ситуация часто складывается при очень высоком содержании железа в питьевой воде, при болезнях печени и селезенки, а также при метаболических нарушениях. Избыток железа включает такие симптомы, как непрекращающиеся расстройства пищеварения (метеоризм, диареи и запоры, тошнота и рвота, изжога), упадок сил и головокружения, появление пигментации на коже. Если не предпринимать никаких мер, возможно развитие осложнений — артритов, диабета, заболеваний печени.
Хроническое воздействие тяжелых металлов на организм в условиях реального производства и экологических особенностей является причиной профессиональных болезней [8].
Процесс самопроизвольного концентрирования газов или растворенных веществ на поверхности раздела фаз называют адсорбцией [7]. В зависимости от природы контактирующих фаз различают адсорбцию на границах: газ — твердое тело, газ – жидкость, жидкость — твердое тело и жидкость — жидкость. Вещества, которые адсорбируются, называют адсорбатами (иногда — адсорбтивами), а вещества, которые адсорбируют на своей поверхности — адсорбентами. В зависимости от характера сил, действующих между частицами (молекулы, атомы, ионы) адсорбата и адсорбента, различают физическую или Ван-дер-Ваальсову адсорбцию и химическую или хемосорбцию.
Природу адсорбции можно установить, исследовав её кинетику и энергетику. Физическая адсорбция происходит под влиянием относительно слабых межмолекулярных сил сцепления (сил Ван-дер-Ваальса), при увеличении температуры физическая адсорбция уменьшается.
Хемосорбция связана с перекрыванием электронных орбиталей частиц адсорбата и адсорбента, т.е. вызывается их химическим взаимодействием. Химическая адсорбция с увеличением температуры увеличивается. Адсорбция представляет собой обратимый процесс. Процесс, обратный адсорбции, называется десорбцией. Количественная зависимость, устанавливаемая между адсорбентом и адсорбтивом при постоянной температуре в виде уравнения или кривой, называется изотермой адсорбции [1], [11].
Энтеросорбенты – лекарственные средства, способные адсорбировать в пищеварительном тракте различные химические вещества и биологические объекты эндо- и экзогенного происхождения, не вступая с ними в химическую реакцию [ 14 ].
Энтеросорбенты имеют пористую структуру, которая представляет собой полостные образования в веществе сорбента в виде каналов – пор. При этом различают макропоры – полостные образования радиусом свыше 200 нм, мезопоры – размером от 100 до 1,6 нм и микропоры – образования менее 1,6 нм. Микропоры хорошо адсорбируют молекулы небольшого размера, а мезопоры и макропоры – более крупные органические молекулы.
Адсорбционная активность (адсорбционная способность, сорбционная емкость, емкость адсорбции, сорбционный объем пор) является специфическим показателем качества для лекарственных средств группы энтеросорбентов и используется для характеристики поглощающей способности сорбента, определяющей количество адсорбата (реактива), которое может поглотить сорбент на единицу своей массы.
По химической структуре различают следующие энтеросорбенты.
Углеродные энтеросорбенты – энтеросорбенты на основе углерода.
— на основе кремния диоксида коллоидного,
— гидрогели и ксерогели метилкремниевой кислоты,
— магния алюмосиликата гидрата коллоидного (аттапульгит).
3. Природные органические энтеросорбенты – энтеросорбенты на основе пищевых волокон, гидролизного лигнина с размером частиц 0,01 – 0,25 мм.
4. Комбинированные энтеросорбенты, в состав которых могут входить два и более типов указанных энтеросорбентов.
По селективности различают селективные (гидрогели метилкремниевой кислоты), моно-, би-, полифункциональные, неселективные (угли активированные, природные препараты – лигнин, хитин, целлюлоза) энтеросорбенты.
Методы определения сорбционной активности
Для определения адсорбционной активности энтеросорбентов используют следующие методы [14]:
— спектрофотометрический метод, адсорбционную активность энтеросорбента определяют по разнице значений оптических плотностей раствора реактива после контакта и до контакта с энтеросорбентом в течение определенного времени;
— титриметрический метод, определение основано на титровании избытка реактива (неадсорбированное количество), оставшегося после контакта с препаратом, например, йодометрическое титрование (избыток метиленового синего), бромат-бромидное титрование (избыток феназона);
— гравиметрический метод, определение основано на поглощении лекарственным средством паров бензола в течение определенного времени.
В нашей работе мы использовали спектрофотометрический метод для определения остаточного содержания катионов железа и меди, и титриметрический для определения остаточно катионов свинца.
Концентрацию окрашенных веществ очень удобно определять фотоколориметрическим методом — по интенсивности поглощения света. Интенсивность поглощения света характеризуется оптической плотностью — десятичным логарифмом отношения интенсивности падающего светового потока к интенсивности потока, прошедшего через этот слой. При неизменной толщине слоя окрашенного вещества и при определённой длине волны света оптическая плотность прямо пропорциональна концентрации вещества (закон Бера). Следовательно, зная величину оптической плотности, можно определить концентрацию вещества в растворе [3, 4, 6]. Сделать это можно используя метод градуировочного графика. Для этого готовят серию растворов окрашенного вещества разной концентрации и строят график зависимости оптической плотности от концентрации раствора (градуировочный график). Измеряют оптическую плотность анализируемой пробы и, используя градуировочный график, определяют концентрацию вещества в пробе. Для фотоколориметрического метода подбирают такую длину волны, чтобы поглощение было максимальным [5].
2.1.1 Определение величины адсорбции катионов железа фотоколориметрическим методом
Сульфосалициловый метод определения железа. Сульфосалициловая кислота С7Н6О6 S образует с железом комплексные ионы разной окраски: при рН=1,8-2,5 < Fe ( Sal )>+ красного цвета, при рН=4-8
Определение содержания железа мы выполняли фотометрическим методом по реакции образования винного комплекса с сульфосалициловой кислотой в кислой среде.
Приготовление стандартных растворов
Для приготовления стандартного раствора катионов железа мы использовали хлорид железа FeCl3 ∙ 6H2O (ч.д.а.), для подавления гидролиза при приготовлении раствора добавляли кислоту.
а) Основной стандартный раствор: 1,35 г соли FeCl3 ∙ 6H2O растворяли в мерной колбе вместимостью 0,5 л, добавляли 1 мл концентрированной HCl (ρ=1,19г/см 3 ) и доводили до метки дистиллированной водой (1 мл раствора содержит 0,01 ммоль катионов железа (+3)).
б) Рабочий раствор для определения железа (Fe 3+ ): 10 мл основного стандартного раствора FeCl3 ∙ 6H2O перенесли в мерную колбу на 100 мл, добавили 1 мл концентрированной HCl, 1 мл 25%-ного раствора сульфосалициловой кислоты, довели до метки дистиллированной водой (1 мл окрашенного в винно-красный цвет раствора содержит 0,001 ммоль катионов железа (+3)).
Построение калибровочного графика
В градуированные пробирки отбирали 1,2,3,4,5 мл и т.д. рабочих растворов, добавляли в каждую дистиллированной воды до объема 10 мл. Таким образом, получили серию стандартных растворов с содержанием железа (ммоль/л): 0,1; 0,2; 0,3; 0,4; 0,5 и т. д. (приложение 1, рис.1). Мы произвели калибровку прибора, сняли показания спектра и зафиксировали длину волны, на которой будут производиться измерения – 386,6 нм (приложение 1, рис.2). Построили графики зависимости оптической плотности от концентрации раствора — градуировочный график (приложение 2, рис.3):
Источник статьи: http://school-science.ru/9/13/43972
Значение слова адсорбция
Начала Современного Естествознания. Тезаурус
(от лат. ad — на, при и sorbeo — поглощаю) — изменение, обычно повышение, концентрации вещества вблизи поверхности раздела фаз («поглощение на поверхности»). Процесс обратный адсорбции — десорбция.
Криминалистическая энциклопедия
поглощение газов, паров и жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. Используется для забора запаховых следов с места происшествия; лежит в основе многих методов хроматографии.
Стоматологический словарь
поглощение какого-либо вещества из газообразной среды или раствора поверхностным слоем другого вещества — жидкости или твердого тела.
Энциклопедический словарь
(от лат. ad — на, при и sorbeo — поглощаю), поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. Адсорбенты обычно имеют большую удельную поверхность — до нескольких сотен м2/г. Физическая адсорбция — результат действия дисперсионных или электростатических сил. Если адсорбция сопровождается химической реакцией поглощаемого вещества с адсорбентом, то она называется хемосорбцией. В промышленности адсорбцию осуществляют в специальных аппаратах — адсорберах; применяют для осушки газов, очистки органических жидкостей и воды, улавливания ценных или вредных отходов производства.
Словарь Ефремовой
ж.
Поглощение, всасывание вещества из раствора или газа поверхностью твердого тела
или поверхностным слоем жидкости.
Словарь медицинских терминов
поглощение (концентрирование) газов или растворенных веществ на поверхности твердого тела или жидкости.
Большая Советская Энциклопедия
(от лат. ad ≈ на, при и sorbeo ≈ поглощаю), поглощение к.-л. вещества из газообразной среды или раствора поверхностным слоем жидкости или твёрдого тела. Например, если поместить в водный раствор уксусной кислоты кусочек угля, то произойдёт А. ≈ количество кислоты в растворе уменьшится, молекулы кислоты сконцентрируются на поверхности угля. А. и абсорбция ≈ поглощение в объёме тела, объединяются общим термином сорбция . Явление А. стало изучаться со 2-й половины 18 в. ( Шееле , 1773), хотя несомненно, что в практической деятельности человечества А. использовалась с незапамятных времён. Учение об А. является частью более общей теории многокомпонентных гетерогенных систем, основы которой заложены У. Гиббсом (1876). Явление А. тесно связано с особыми свойствами вещества в поверхностном слое. например, молекулы, лежащие на поверхности раздела фаз жидкость ≈ пар, втягиваются внутрь жидкости, т. к. испытывают большее притяжение со стороны молекул, находящихся в объёме жидкости, чем со стороны молекул пара, концентрация которых во много раз меньше концентрации жидкости. Это внутреннее притяжение заставляет поверхность сокращаться и количественно характеризуется поверхностным натяжением . По той же причине молекулы какого-либо другого вещества, оказавшиеся вблизи поверхности, притянутся к ней и произойдёт А. После А. внутреннее притяжение частично компенсируется притяжением со стороны адсорбционного слоя и поверхностное натяжение уменьшается. Гиббс вывел формулу, связывающую значение А. с изменением поверхностного натяжения. Те вещества, А. которых сильно уменьшает поверхностное натяжение, принято называть поверхностно-активными.
Вещество, на поверхности которого происходит А., называется адсорбентом, а поглощаемое из объёмной фазы ≈ адсорбатом. В зависимости от характера взаимодействия между молекулой адсорбата и адсорбентом А. принято подразделять на физическую А. и хемосорбцию. Менее прочная физическая А. не сопровождается существенными изменениями молекул адсорбата. Она обусловлена силами межмолекулярного взаимодействия, которые связывают молекулы в жидкостях и некоторых кристаллах и проявляются в поведении сильно сжатых газов. При хемосорбции молекулы адсорбата и адсорбента образуют химические соединения. Часто А. обусловлена и физическими и химическими силами, поэтому не существует чёткой границы между физикой А. и хемосорбцией.
Физически адсорбированные молекулы более или менее свободно перемещаются по поверхности, при этом их свойства часто аналогичны свойствам очень тонкого слоя газа, т. н. двухмерного газа. Они могут собираться группами, образуя слой двухмерной жидкости или двухмерного твёрдого тела. Адсорбированные молекулы рано или поздно покидают поверхность ≈ десорбируются. Время, в течение которого молекула находится на поверхности, называется временем А. Времена А. могут колебаться в очень широких пределах. Скоростью А. (соответственно скоростью десорбции) называется количество молекул, адсорбирующихся (или десорбирующихся) за единицу времени, оба значения величин относят к единице поверхности или массы адсорбента. Скорость хемосорбции, как и скорость любого химического процесса, чаще всего увеличивается с повышением температуры (т. н. активированная А., см. Хемосорбция ). Если скорости А. и десорбции равны друг другу, то говорят, что установилось адсорбционное равновесие. В состоянии равновесия количество адсорбированных молекул остаётся постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и др.).
Адсорбированные молекулы не только совершают движение вдоль поверхности адсорбента, но и колеблются, то приближаясь к поверхности, то удаляясь от неё. Чем выше температура, тем интенсивнее колебательное движение, а стало быть, больше вероятность того, что в процессе таких колебаний связь молекулы с поверхностью будет разорвана и молекула десорбируется. Благодаря этому с ростом температуры уменьшается время А. и равновесное количество адсорбированных молекул.
С ростом концентрации или давления адсорбата в объёме увеличивается частота попаданий молекул адсорбата на поверхность адсорбента; пропорционально ей возрастает скорость А. и увеличивается равновесное количество адсорбированных молекул. Кривые зависимости равновесной А. от концентрации или давления адсорбата при постоянной температуре называются изотермами А.
Если адсорбат покрывает поверхность слоем толщиной в одну молекулу, А. называется мономолекулярной. Простейшая изотерма мономолекулярной А. представляет собой прямую линию, выходящую из начала координат, где на оси абсцисс отложено давление адсорбата Р, а на оси ординат степень заполнения поверхности Q, т. е. доля поверхности, покрытая адсорбированными молекулами. Это ≈ т. н. изотерма Генри:
Коэффициент пропорциональности k зависит главным образом от температуры и характера взаимодействия адсорбент ≈ адсорбат.
Уравнение Генри справедливо при очень низких степенях заполнения для однородной поверхности. По мере увеличения степени заполнения всё большую роль начинает играть взаимодействие между адсорбированными молекулами и интенсивность их поверхностной подвижности. Если молекулы адсорбата притягиваются друг к другу, то каждая вновь адсорбирующаяся молекула будет испытывать притяжение и адсорбата и молекул, адсорбированных ранее. Поэтому, по мере заполнения поверхности, силы, удерживающие адсорбированную молекулу, будут увеличиваться и условия для А. будут всё более и более благоприятными. В этом случае с ростом давления изотерма всё круче и круче идёт вверх (см. кривую 1). Однако по мере заполнения поверхности вновь адсорбирующимися молекулами становится всё труднее найти свободное (не занятое др. молекулами адсорбата) место на поверхности. Поэтому с увеличением давления рост А. замедляется и степень покрытия стремится к постоянному значению, равному единице (см. кривую 2, которая характерна при отсутствии взаимного притяжения молекул адсорбата). Если действуют оба эти фактора, то получаются вогнуто-выпуклые изотермы (см. кривую 3).
Выпуклые изотермы (см. кривую 2) часто описывают уравнением Ленгмюра
Здесь а ≈ адсорбционный коэффициент, аналогичный по физическому смыслу константе Генри k. Уравнение Ленгмюра справедливо для мономолекулярной А. на однородной поверхности, если можно пренебречь притяжением молекул адсорбата между собой и их подвижностью вдоль поверхности.
При дальнейшем увеличении давления происходит заполнение второго, третьего и т. д. слоев, т. е. имеет место полимолекулярная А. Если адсорбент имеет узкие поры и смачивается адсорбатом (см. Смачивание ), то в порах может произойти конденсация при давлениях более низких, чем давление насыщенного пара адсорбата. Это явление называется капиллярной конденсацией . Поверхность твёрдых адсорбентов чаще всего неоднородна по адсорбционным свойствам: одни участки поверхности адсорбируют лучше, другие ≈ хуже. При малых давлениях преобладает А. на наиболее активных участках поверхности, с увеличением давления заполняются менее активные участки. Однако, строго говоря, А. происходит одновременно на всей поверхности, и получаемая на опыте изотерма представляет собой сумму изотерм, каждая из которых соответствует определённому типу поверхности. Благодаря этому экспериментальные изотермы мономолекулярной А. могут существенно отличаться от кривых, приведённых на рис.
Почти всегда процесс А. сопровождается выделением тепла, называемой теплотой А. Хотя теплота А. не является единственным фактором, характеризующим прочность А., однако чаще всего чем прочнее А., тем больше её теплота. Теплота хемосорбции обычно составляет несколько десятков ккал/моль, теплота физической А. редко превосходит 10 ккал/моль (40 кдж/моль). По мере заполнения неоднородной поверхности теплота А. обычно уменьшается. При переходе в область полимолекулярной А. теплота А. понижается до величины, близкой к теплоте конденсации адсорбата.
А. играет важную роль при теплообмене между газообразными, жидкими и твёрдыми телами. например, молекулы газа, адсорбируясь на горячей поверхности, приобретают энергию, соответствующую температуре поверхности, и после десорбции сообщают эту энергию другим молекулам газа, нагревая его. Это не единственный, но важный механизм теплообмена.
А.≈ один из решающих факторов в стабилизации коллоидных систем (см. Дисперсные системы , Мицелла , Коагуляция ) и одна из важнейших стадий реакций в гетерогенных системах, в частности в гетерогенном катализе (см. Топохимические реакции , Катализ ). В биологических системах А. ≈ первая стадия поглощения субмикроскопическими коллоидными структурами, органеллами, клетками и тканями различных веществ из окружающей среды, функционирование биологических мембран, первые этапы взаимодействия ферментов с субстратом, защитные реакции против токсичных веществ, процессы всасывания ≈ всё это связано с А. Многие адсорбенты (активный уголь, каолин, иониты и др.) служат противоядиями, поглощая и удаляя из организма попавшие в желудочно-кишечный тракт вредные вещества. А. применяется для разделения газовых и жидких смесей, для осушки и очистки газов и жидкостей (например, очистки воздуха в противогазах). Одним из древнейших применений А. является очистка вина. В науке и технике приобрёл большое значение хроматографический метод анализа, основанный на различной способности компонентов анализируемой смеси к А. (см. Хроматография ). А. используют также для получения и очистки биологически активных веществ ≈ витаминов, ферментов, гормонов, антибиотиков и др.
При крашении тканей, в полиграфической промышленности имеют дело с А. молекул красителей. При производстве полимеров наполнителями служат адсорбенты. В вакуумной технике А. на стенках откачиваемой аппаратуры замедляет скорость откачки и ухудшает вакуум, однако, с другой стороны, действие различных сорбционных насосов основано на явлении А. В радиоэлектронной промышленности А. используется для стабилизации электрических свойств полупроводниковых приборов. Вообще во всех явлениях и процессах, где существенны поверхностные свойства, А. играет важную роль.
Лит.: Курс физической химии, т. 1, М., 1964; Бур Я.Х., Динамический характер адсорбции, пер. с англ., М., 1962; Трепнел Б., Хемосорбция, пер. с англ., М., 1958; Бладергрен В., Физ. химия в медицине и биологии, пер. с нем., М., 1951.
Источник статьи: http://znachenie-slova.ru/%D0%B0%D0%B4%D1%81%D0%BE%D1%80%D0%B1%D1%86%D0%B8%D1%8F
7 эффективных сорбентов для взрослых и детей: принцип действия, где купить
Сорбенты представляют собой особые вещества, которые выводят вредные компоненты из желудка и кишечника. Они удерживают опасные токсины, продукты обмена, соединяются с ними и способствуют удалению вместе с калом. Сегодня практически все сорбенты продаются без рецепта врача. Их можно применять взрослым и детям и в любом возрасте.
Что такое сорбенты, и как они работают
Сорбенты представляют собой особые вещества, которые выводят из организма токсические вещества, в том числе опасные продукты обмена. Это крупные молекулы с особой структурой, благодаря которой они могут буквально как губки впитывать ненужные компоненты и механически выводить их вместе с калом. Этот процесс называется сорбцией, а удаляемое вещество – сорбатом.
Благодаря этому такие препараты дают несколько преимуществ:
нормализуют процессы пищеварения;
перераспределяют ферменты в организме;
предупреждают развитие симптомов отравления и аллергических реакций.
Абсорбенты для кишечника: основные виды
В зависимости от особенностей воздействия сорбенты делятся на несколько типов:
Адсорбенты – фильтруют вещества на поверхности.
Абсорбенты – вбирают вещества в себя.
Ионообменные – удаляют токсины за счет ионообменных реакций.
Комплексообразующие – удаляют вредные вещества за счет образования химических комплексов.
Отдельно выделяют и энтеросорбенты. Это разновидность адсорбентов, которые не вступают в химическую реакцию с токсинами, а просто выводят его механически. Такие препараты защищают слизистую органов пищеварения за счет обволакивания. Они защищают клетки от поражения опасными веществами.
Есть также классификация сорбентов в зависимости от состава:
на основе углерода (активированный уголь);
на основе кремния (синтетические и натуральные средства);
на основе полимерных соединений;
природные сорбенты, например, скорлупа урюка, орехов, сосновые шишки.
Показания и противопоказания
Препараты необходимо применять в таких случаях:
поражение ядовитыми веществами;
дерматит атопического типа;
инфекция в органах пищеварения;
расстройства функций печени, почек.
Сорбенты можно применять пациентам в разных возрастах, в том числе маленьким детям. Беременным женщинам и в период вскармливания их можно употреблять с осторожностью.
При этом не следует забывать о противопоказаниях:
язвенные поражения органов пищеварения;
повышенная чувствительность к любому компоненту средства;
кровотечения в кишечнике, желудке.
7 самых эффективных сорбентов
Сегодня выпускают очень много лекарств, относящихся к группе сорбентов. Среди наиболее эффективных препаратов можно выделить такие:
Активированный уголь – хорошо адсорбирует опасные компоненты на своей поверхности. Для быстрого результата рекомендуется принять несколько таблеток – по 1 штуке на каждые 10 кг.
«Смекта» – препарат органической природы. Избирательно поглощает вредные вещества на поверхности. Содержит специальные вкусовые добавки, благодаря чему раствор удобно давать как взрослым, так и детям.
«Полисорб» – диоксид кремния в коллоидном виде. Действует не избирательно, поглощает все содержимое в кишечнике, применяется для быстрого лечения.
«Полифепан» – препарат на основе лигнина. Уменьшает концентрацию холестерина, стимулирует перистальтику и укрепляет иммунную систему.
«Энтеросгель» – оказывает комплексный лечебный эффект, выводит вредные вещества и восстанавливает микрофлору кишечника. Способствует выведению вирусов, бактерий и других патогенных микроорганизмов.
«Фильтрум» – препарата на основе лигнина. Выпускается для детей и взрослых, применяется для комплексной детоксикации.
«Лактофильтрум» – пребиотик с функциями адсорбента. Удаляет вредные продукты обмена и токсины. Благодаря входящей в его состав лактулозе стимулирует синтез органических кислот, полезных для организма.
Гипоаллергенная диета для кишечника
Чтобы предотвратить поступление в организм вредных веществ, рекомендуется соблюдать гипоаллергенную диету. Конкретные рекомендации разрабатывает врач, в зависимости от пола, возраста и других показателей. При этом есть общее правило – пациентам следует включить в рацион такие виды продуктов:
мясо, в том числе птица, нежирное;
кисломолочные напитки, например, кефир;
нежирные разновидности рыбы наподобие минтая, хека;
все овощи, кроме оранжевых, красных и других ярких оттенков;
ягоды крыжовника, белой смородины;
сухофрукты, исключая курагу, финики и изюм;
компоты, чай некрепкий, вода без ограничений.
Исключать следует такие продукты, как, например, жирное мясо, жирную рыбу, цитрусы, овощи и фрукты ярких оттенков, а также соки на их основе. Не рекомендуется употреблять куркуму, крепкий чай и кофе, а также разные виды грибов, хлеб, булочки и другую сдобу.
Где купить сорбенты
Сорбенты продают в аптеке по доступным ценам в пределах 200-400 рублей за одну упаковку. Как правило, ее достаточно для проведения полноценного курса лечения. Купить лекарства можно без рецепта врача. Однако накануне желательно проконсультироваться, особенно перед лечением детей.
Источник статьи: http://aptstore.ru/articles/7-effektivnykh-sorbentov-dlya-vzroslykh-i-detey-printsip-deystviya-gde-kupit/
О процессе адсорбции на твёрдых адсорбентах
Адсорбцию применяют при очистке воды от органических и хлорорганических соединений, нефтепродуктов, аммиака, ПАВ при низких концентрациях загрязнений на стадии глубокой очистки. В статье рассмотрены основные математические модели адсорбции на твёрдых адсорбентах. Изучены теоретические аспекты процесса адсорбции из воды органических веществ на твёрдых адсорбентах. Приведен расчёт аппаратов для проведения адсорбции, а также даны их основные технические характеристики.
Адсорбенты — пористые твёрдые вещества с сильно развитой поверхностью пор. Удельная поверхность пор может составлять от 200 до 1000 м 2 /г, а средний радиус пор от 0,2 до 10 нм. Адсорбенты применяют в виде таблеток, гранул или шариков размером от 2 до 6 мм, а также порошков размером от 20 до 500 мкм. В качестве адсорбентов используют активированный уголь, алюмосиликаты, цеолиты и др. Цеолиты (молекулярные сита) — природные и синтетические адсорбенты с регулируемым размером пор, представляющий собой алюмосиликаты натрия и калия. Синтетические адсорбенты активнее, но значительно дороже природных.
Важной характеристикой адсорбентов является их активность, под которой понимают массу адсорбированного вещества на единицу массы адсорбента в условиях равновесия. По отношению к разным компонентам смеси активность адсорбента различна. Так, парафиновые и нафтеновые углеводороды поглощаются в меньшей степени, чем ароматические, непредельные и гетеро атомные углеводороды (содержащие атомы S, N и O). С увеличением размера молекул адсорбата (молекулярной массы) адсорбционная способность адсорбента возрастает.
Адсорбенты характеризуются также временем защитного действия, под которым понимают промежуток времени, в течение которого концентрация поглощаемых компонентов на выходе из слоя адсорбента не изменяется. При большем времени работы адсорбента не изменяется. При большем времени работы адсорбента происходит проскок поглощаемых компонентов, связанный с исчерпанием активности адсорбента. В этом случае необходима регенерация адсорбента.
Активированные угли являются наиболее распространенными адсорбентами в водоподготовке. Они представляют собой пористые углеродные тела, зернённые или порошкообразные, имеющие большую площадь поверхности. Неоднородная масса, состоящая из кристаллитов графита и аморфного углерода, определяет пористую структуру активированных углей, а также их адсорбционные и физико-механические свойства. Активированные угли обладают высокой сорбционной активностью по отношению к основным классам загрязнителей воды: фенолам, нефтепродуктам, пестицидам, поверхностно-активным веществам (ПАВ). Пористая структура активированных углей характеризуется наличием развитой системы пор, которые классифицируются по размерам:
- микропоры (размер до 0,002 мкм);
- мезопоры (размер 0,002-0,05 мкм);
- макропоры (размер более 0,05 мкм).
Важной характеристикой адсорбентов является их активность, под которой понимают массу адсорбированного вещества на единицу массы адсорбента в условиях равновесия. По отношению к разным компонентам смеси активность адсорбента различна
Микропоры — наиболее мелкая разновидность пор, соизмеримая с размерами адсорбируемых молекул. Удельная площадь поверхности микропор достигает 800-1000 м 2 /г.
Мезопоры — поры, для которых характерно послойное заполнение поверхности адсорбируемыми молекулами, завершающееся их наполнением по механизму капиллярной конденсации. Удельная площадь поверхности мезопор достигает 100-200 м 2 /г.
Макропоры — это самая крупная разновидность пор, удельная площадь поверхности которых обычно не превышает 0,2-0,5 м 2 /г. Макропоры в процессе сорбции не заполняются, но выполняют роль транспортных каналов для доставки вещества к поверхности адсорбирующих его пор.
Структура активированных углей представляет собой пакеты плоских слоев, образованных конденсированными гексагональными ароматическими кольцами атомов углерода. Размеры их плоскостей находятся в пределах от 1 до 3 нм. Ориентация отдельных плоскостей в кристаллитах углерода довольно часто нарушена, и отдельные слои беспорядочно сдвинуты друг относительно друга, не всегда сохраняя при этом взаимное параллельное расположение (зоны аморфного углерода).
Активированные угли изготавливают на древесной и каменноугольной основах, а также из полимерных волокон. Процесс их производства заключается в карбонизации твёрдых органических материалов с последующим окислением образовавшегося угля-сырца кислородом воздуха, водяным паром, оксидом углерода (IV) или другими активирующими реагентами при температуре 700-1000 °C. В процессе активации угля пары воды и диоксид углерода диффундируют в поры карбонизованного материала и вступают в реакции окисления. При этом наименее плотная часть материала зоны аморфного углерода окисляется до газообразных продуктов, в результате чего формируются поры молекулярных размеров с большой внутренней поверхностью.
Адсорбционные свойства активных углей определяются количеством стандартного вещества, сорбированного единицей массы угля при определённых условиях, а также временем защитного действия единицы объёма угля до полного его насыщения. В основном адсорбционные свойства углей определяются микропора- ми, составляющими до 90 % всей поверхности активного угля. На ней и протекают процессы адсорбции, в основе которых лежит взаимодействие энергетически ненасыщенных атомов углерода с молекулами сорбируемых веществ. Лучше сорбируются вещества в молекулярной форме, хуже — в ионной.
Способность органических веществ к сорбции возрастает в ряду: гликоли ← спирты ← кетоны ← сложные эфиры ← альдегиды ← недиссоциированные кислоты ← ароматические соединения [10]. Способность веществ к сорбции также возрастает с ростом молекулярной массы и температуры.
Для оценки качества зернённых активированных углей, используемых в качестве загрузки в различные типы адсорберов, важное значение также имеют их физико-механические характеристики: фракционный состав (зернение), насыпная плотность, механическая прочность.
При адсорбции из водных растворов извлекаются в основном молекулы органических веществ, а также коллоидные частицы и микровзвеси
По форме и размеру частиц активированные угли могут быть порошкообразными, зернёнными (дроблёными и гранулированными), а также волокнистыми. Порошкообразные имеют размер частиц менее 0,1 мм, зернённые — от 0,5 до 5 мм, волокнистые — диаметр менее 0,1 мм, а длину несколько сантиметров.
Отметим, что порошкообразные активные угли как раз и используют для очистки воды однократно на городских станциях водоподготовки, вводя их во время или после коагуляции.
Зернённые угли применяются для очистки воды фильтрации в аппаратах со сплошным слоем сорбента типа механического фильтра. В зависимости от типа угли могут регенерироваться острым паром и химическими реагентами. Однако из-за сложности организации такого процесса, больших потерь угля и невозможности полной его регенерации (только на 40-70 %) уголь используют однократно. Волокнистые активированные угли имеют наибольшую эффективную площадь поверхности и могут применяться в фильтрах специальной конструкции. Они нашли широкое применение в бытовых фильтрах.
Древесные угли характеризуются высокой удельной площадью (величиной до 1,8-2,0 см 3 /г), широким распределением пор по размерам и, как следствие, высокой ёмкостью. С другой стороны, они имеют низкую механическую прочность и удельную массу. В системах водоподготовки применяются, как правило, в бытовых и малогабаритных промышленных фильтрах.
Угли на каменноугольной основе имеют значительно лучшие гидравлические и механические характеристики, что позволяет применять их в адсорберах с неподвижным и движущимся слоем адсорбента любых габаритов.
Особую группу представляют новые для отечественного рынка импортные активированные угли, изготовленные из скорлупы кокосового ореха, например, угли 207C фирмы Sutcliffe Carbons (Великобритания). В них сочетаются высокая прочность, стабильный оптимальный гранулометрический состав, а также высокая ёмкость.
При адсорбции из водных растворов извлекаются в основном молекулы органических веществ, а также коллоидные частицы и микровзвеси. Хорошо сорбируются фенолы, полициклические ароматические углеводороды, нефтепродукты, хлор- и фосфорорганические соединения. Активированные угли также используются как катализаторы разложения находящихся в воде активного хлора и озона. Эти процессы могут совмещаться с сорбцией органических веществ, повышая её эффективность. Соли, находящиеся в ионном виде, практически не извлекаются.
В табл. 1 приведены физические свойства и области применения отечественных активированных углей в отрасли водоподготовки.
Основной и наиважнейшей характеристикой, соответствующей каждой марке активированного угля, является суммарный объём микропор. Активированные угли адсорбируют органические вещества неприродного происхождения: фенолы, спирты, эфиры, кетоны, нефтепродукты, амины, ПАВ, органические красители, хлорамины [11]. Использование активированного угля позволяет на стадии глубокой очистки сточных вод снизить концентрацию органических соединений на 90-99 %.
При сорбции на активированный уголь не должна поступать вода, содержащая взвешенные и коллоидные вещества, забивающие поры активного угля. Использованный активированный уголь, исчерпавший свою сорбционную способность (ёмкость), регенерируется или полностью заменяется в установке.
Добавление окислителей (озона или хлора) перед подачей воды на угольные фильтры позволяет увеличить срок службы активированного угля до его замены, улучшить качество очищенной воды или проводить очистку от соединений азота. При совместном проведении сорбции и озонирования происходит синергетический эффект. Озон разрушает макромолекулы, а затем активированный уголь сорбирует продукты частичного разложения в полтора-три раза эффективнее, чем без предварительного окисления. Предполагается, что при этом происходит деструкция биологически трудноокисляемых соединений с образованием окисляемых, в результате чего на угольной загрузке протекают биологические процессы окисления органических веществ, в результате воздействия озона на макромолекулы их молекулярный вес и размеры уменьшаются, и они могут сорбироваться в истинных микро- порах активного угля.
Комбинация методов озонирования и сорбции позволяет снизить в два-пять раз расходы и озона и активного угля по сравнению только с сорбцией или только с озонированием, а, следовательно, и стоимость водоочистки.
При хлорировании воды с последующей сорбцией на активированном угле происходит удаление аммонийного азота. При хлорировании воды, содержащей аммонийный азот, в зависимости от рН, соотношения дозы активного хлора и концентрации аммонийного азота образуется смесь монохлораминов, дихлораминов, трёххлористого азота, сорбируемых при фильтрации активированным углем, и молекулярного азота, уходящего в атмосферу.
Цеолиты или молекулярные сита — синтетические или природные адсорбенты с регулярной структурой пор, представляющие собой алюмосиликаты натрия, калия или других элементов [12]. В промежутках кристаллического каркаса расположены гидратированные положительные ионы щелочных и щелочно-земельных металлов, компенсирующих заряд каркаса, и молекулы воды. Общая химическая формула цеолитов:
где Me — катион щелочного металла; n — его валентность.
В качестве катионов в состав природных цеолитов обычно входят натрий, калий, кальций, реже магний, барий, стронций. Кристаллическая структура цеолитов образована тетраэдрами SiO4 и АlO4.
Известно более 30-ти видов природных цеолитов, но лишь часть из них образует крупные месторождения (80 °% концентратов) удобные для промышленной переработки. Наиболее распространены природные цеолиты:
Для получения прочных и водостойких фильтрующих материалов из природных цеолитов их, также как и глины, нагревают в печах с хлорид-карбонатом натрия при 1000 °C. Обработка поверхности цеолитов кремнийорганическими соединениями делает её гидрофобной, что улучшает сорбцию органических соединений и нефтепродуктов из воды.
При сорбции на активированный уголь не должна поступать вода, содержащая взвешенные и коллоидные вещества, забивающие поры активного угля. Использованный активированный уголь регенерируется или полностью заменяется
Синтетические цеолиты имеют строение и кристаллическую структуру, аналогичные природным цеолитам. Аналогами фожазита являются синтетические цеолиты типа X и Y: цеолиты типа А относятся к низкокремнистым формам — в них отношение SiO2:Al2O3 не превышает 2; цеолиты типа X имеют отношение SiO2:Al2O3, которое может изменяться от 2,2 до 3,3; цеолиты типа Y характеризуются соотношением SiO2:Al2O3 в пределах от 3,1 до 6.
Отметим, что при увеличении этого показателя повышается кислотостойкость цеолитов (размеры пор, определяющих избирательность цеолитов, изменяются от 0,0003 до 0,0009 мкм).
Благодаря свойству поглощать или пропускать через кристаллический каркас молекулы других химических соединений, цеолит может использоваться как своеобразное молекулярное сито для разделения смеси газов и жидкостей. Кроме этого цеолиты являются ионообменниками катионного типа, способными извлекать из воды тяжелые металлы, по сравнению с синтетическими смолами обладает повышенной избирательностью к ионам цезия, свинца, кадмия и стронция. Эффективны цеолиты и в отношении органических соединений, например, концентрация наиболее распространенного в воде канцерогена бензапирена уменьшается почти в 250 раз. Замена действующих кварцевых фильтрующих материалов на цеолит позволяет повысить производительность водоочистных сооружений почти в два раза.
Природные цеолиты используются в виде порошков и фильтрующих материалов для очистки воды от ПАВ, тяжелых металлов, ароматических органических соединений, красителей, пестицидов, коллоидных и бактериальных загрязнений. После использования цеолит подвергается многократной регенерации исходной водой или солевым раствором, в зависимости от конкретного целевого использования.
Эффективность водоочистки цеолитом по органическим и неорганическим загрязнителям показана в табл. 2.
Макропористые иониты имеют большую механическую прочность, но меньшую объёмную ёмкость, чем гелевые и изопористые. Они обладают высокой осмотической стабильностью, улучшенной кинетикой обмена, проявляют ситовый эффект
Иониты — класс фильтрующих ионообменных материалов на основе ионообменных смол, представляющие собой твёрдые, практически нерастворимые полиэлектролиты, природные, искусственные или синтетические, способные к ионному обмену. Как и цеолиты они состоят из каркаса (матрицы), несущего положительный или отрицательный заряд, и подвижных противоионов, которые компенсируют своими зарядами заряд каркаса и могут стехиометрически обмениваться на ионы того же заряда, содержащиеся в водном растворе.
Большинство органических ионитов, за исключением макропористых и изопористых ионитов, имеют гелевую структуру. В них отсутствуют реальные поры. Доступность всего объёма их зерен для обменивающихся ионов обеспечивается благодаря их способности к набуханию в водных растворах.
Многие катиониты, в том числе цеолиты (за исключением клиноптилолита, эрионита и морденита) и глинистые минералы, могут работать только в солевых формах (натриевой, кальциевой и т.д.). Они не могут быть переведены в водородную форму, так как при этом разрушается их структура, и, следовательно, не могут применяться в технологии обессоливания и опреснения сточных и природных вод. Кроме того, обессоливание воды невозможно без одновременного использования анионитов, которые среди неорганических минералов
и соединений встречаются весьма редко. Эти обстоятельства в немалой степени способствовали развитию синтеза органических катионитов и анионитов на основе синтетических органических соединений, получивших широкое применение в технологии обессоливания воды, в гидрометаллургии, в технологии очистки сточных вод и в других отраслях.
Большинство органических ионитов получают полимеризацией, поликонденсацией или путем полимераналогич- ных превращений (химической обработкой полимера, не обладавшего до этого свойствами ионита) сополимеров стирола и дивинилбензола (ДВБ). В их числе сильнокислотные катиониты (например, КУ-2-8), сильно- и слабоосновные аниониты (например, АВ-17-8). Направленный синтез ионообменных смол позволяет создавать материалы с заданными технологическими характеристиками. Успешно развивается синтез важных в практическом отношении ионитов на базе винильных производных пиридина, прежде всего 2,5-метилвинилпиридина, на основе алифатических соединений ионогенного характера, таких как метилакрилат, акрилонитрил, полиэтиленполиамины, эпихлоргидрин.
Макропористые иониты получаются путем введения в реакционную массу в процессе сополимеризации и поликонденсации порообразователя (изооктан, декан, бензины БР-1, БЛХ, спирты нормального и изомерного строения), после удаления, которого ионит сохраняет реальные поры и приобретает свойства адсорбентов типа активных углей: большую удельную поверхность и объём пор. Макропористые иониты имеют большую механическую прочность, но меньшую объёмную ёмкость, чем гелевые и изопористые. Они обладают высокой осмотической стабильностью, улучшенной кинетикой обмена, проявляют ситовый эффект.
Основные физико-механические характеристики отечественных ионитов приведены в табл. 3.
Принципы расчёта адсорберов
Расчёт адсорберов периодического действия заключается в определении высоты слоя адсорбента, диаметра и высоты адсорбера. Количество адсорбента для поглощения адсорбтива из исходной смеси с начальной концентрацией ун до конечной ук определяется из материального баланса адсорбции:
где G и Vа — масса газовой (жидкой) смеси и адсорбента, кг; хн и хк — концентрации адсорбтива и адсорбента, г/кг.
или, если требуется определить конечное содержание адсорбтива в смеси:
Последнее уравнение представляет собой прямую с тангенсом угла наклона, равным tg(α) = –Vа/G в координатах у-х.
Диаметр адсорбера определяется в зависимости от расхода V [м 3 /с] парогазовой смеси или раствора через слой адсорбента и скорости потока v0 по формуле:
где ρн — насыпная плотность адсорбента, кг/м 3 . Продолжительность адсорбции:
где ρ — плотность парогазовой смеси или раствора, кг/м 3 .
Высоту слоя адсорбента также можно найти на основании экспериментального определения времени защитного действия слоя или приняв его, исходя из технологических требований, по уравнению h = u(τ – τ0).
Скорость перемещения фронта адсорбции определяется уравнением:
где v0 — фиктивная скорость потока, равная vкε (здесь vк — скорость потока в каналах между частицами адсорбента; ε — порозность слоя адсорбента); хр.н — концентрация адсорбтива в слое адсорбента, равновесная с объёмной концентрацией ун адсорбтива в потоке.
Потерю времени защитного действия слоя τ0 можно приближённо определить по уравнению:
где h0 — высота слоя адсорбента, м.
Затем, исходя из высоты слоя адсорбента и конструктивных соображений, определяют высоту адсорбера.
Расчёт адсорберов непрерывного действия заключается в определении высоты колонны, рабочего объёма, диаметра и числа тарелок.
Высоту адсорбера определяют по основному уравнению массопередачи:
где Va — масса адсорбента в адсорбере, кг; σ — удельная площадь поверхности адсорбента в условиях проведения данного процесса, м 2 /кг. Тогда:
Расчёт числа теоретических тарелок может быть выполнен с использованием изотермы адсорбции и рабочей линии по аналогии с расчётом других массообменных процессов. Тогда их число определяется графическим построением ломаной линии между изотермой адсорбции и рабочей линией
Согласно уравнению материального баланса за промежуток τ в адсорбер поступает dL количества адсорбента и такое же количество отводится. При этом концентрация х изменяется на dx за счёт поступления свежего адсорбента:
где хк — концентрация адсорбтива в адсорбенте, находящемся в адсорбере; L — расход адсорбента; хн — концентрация адсорбтива в поступающем в адсорбер адсорбенте. Из уравнения (30) получим:
Сравнивая уравнения (29) и (33), получим следующее выражение:
Отсюда получим рабочий объём адсорбера, который будет равен:
Время пребывания адсорбента в адсорбере с учётом, что τ = VaL:
а ун и yк — начальная и конечная концентрации адсорбтива в газовой смеси; yp — равновесная концентрация.
Время защитного действия или адсорбции вычисляется как:
где k = 1/u — коэффициент защитного действия слоя; τ0 — потеря времени защитного действия слоя адсорбента.
Величины в уравнении (37) определяются на основании экспериментальных данных, которые изображаются в виде графика (рис. 3). Тангенс угла наклона прямолинейной части кривой равен коэффициенту защитного действия слоя tg(α) = k, а отрезок, отсекаемый на продолжении оси ординат, соответствует потере времени защитного действия τ0.
Диаметр адсорбера определяется по уравнению (23). Высота адсорбента в адсорбере вычисляется по формуле:
Число тарелок в тарельчатых адсорберах с псевдоожиженным слоем:
где hт — высота слоя адсорбента на тарелке (принимается равной 50 мм).
Расчёт числа теоретических тарелок может быть выполнен с использованием изотермы адсорбции и рабочей линии по аналогии с расчётом других массообменных процессов.
В этом случае число теоретических тарелок определяется графическим построением ломаной линии между изотермой адсорбции и рабочей линией (рис. 4). На основе такого построения производится определение общего числа теоретических тарелок в адсорбере.
На основании вышесказанного можно сформулировать следующие закономерности процесса адсорбции.
1. Существуют различные математические модели адсорбции — мономолекулярная адсорбция, полимолекулярная адсорбция, капиллярная конденсация, каждая из которых описывает экспериментальные данные в определённых условиях.
2. Адсорбирующая способность веществ зависит от природы, строения молекул и молекулярного веса исходных веществ, а также от структуры адсорбента, величины удельной поверхности, размеров пор и химического состава.
3. Адсорбция является наиболее эффективной при малых концентрациях извлекаемых веществ. Чем меньше температура и больше давление при адсорбции, тем больше степень извлечения целевых компонентов.
4. При исчерпании адсорбционной способности возникает проскок адсорбата и необходимость регенерации адсорбента. Активность адсорбента от числа регенераций постепенно снижается. Наибольшее падение активности обычно наблюдается после первой регенерации.
Источник статьи: http://www.c-o-k.ru/articles/o-processe-adsorbcii-na-tverdyh-adsorbentah-1